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In the infarcted heart, the damage-associated molecular pattern proteins released by necrotic cells trigger both myocardial and
systemic inflammatory responses. Induction of chemokines and cytokines and up-regulation of endothelial adhesion molecules
mediate leukocyte recruitment in the infarcted myocardium. Inflammatory cells clear the infarct of dead cells and matrix debris
and activate repair by myofibroblasts and vascular cells, but may also contribute to adverse fibrotic remodelling of viable seg-
ments, accentuate cardiomyocyte apoptosis and exert arrhythmogenic actions. Excessive, prolonged and dysregulated inflam-
mation has been implicated in the pathogenesis of complications and may be involved in the development of heart failure
following infarction. Studies in animal models of myocardial infarction (MI) have suggested the effectiveness of pharmacological
interventions targeting the inflammatory response. This article provides a brief overview of the cell biology of the post-infarction
inflammatory response and discusses the use of pharmacological interventions targeting inflammation following infarction.
Therapy with broad anti-inflammatory and immunomodulatory agents may also inhibit important repair pathways, thus exerting
detrimental actions in patients with MI. Extensive experimental evidence suggests that targeting specific inflammatory signals,
such as the complement cascade, chemokines, cytokines, proteases, selectins and leukocyte integrins, may hold promise. How-
ever, clinical translation has proved challenging. Targeting IL-1 may benefit patients with exaggerated post-MI inflammatory
responses following infarction, not only by attenuating adverse remodelling but also by stabilizing the atherosclerotic plaque and
by inhibiting arrhythmia generation. Identification of the therapeutic window for specific interventions and pathophysiological
stratification of MI patients using inflammatory biomarkers and imaging strategies are critical for optimal therapeutic design.

Abbreviations
11β-HSD, 11-β hydroxysteroid dehydrogenase; ACS, acute coronary syndrome; CRP, C-reactive protein; ECM, extracellular
matrix; GR, glucocorticoid receptor; iNKT, invariant natural killer T cells; IRAK, IL-1 receptor associated kinase; MI,
myocardial infarction; MR, mineralocorticoid receptor; NSAIDs, nonsteroidal anti-inflammatory drugs; PCI, percutaneous
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Introduction
Myocardial infarction (MI) is a major cause of morbidity and
mortality worldwide. Implementation of reperfusion strate-
gies in patients presenting with ST elevation MI (STEMI) has
significantly reduced acute mortality. However, this remark-
able therapeutic success resulted in an expansion of the pool
of patients who, while surviving the acute event, remain at
risk for development of heart failure. The pathogenesis of
heart failure following MI is intricately linked with repair
and remodelling of the infarcted heart. The term ‘post-
infarction ventricular remodelling’ describes a constellation
of cellular, molecular and proteomic changes in both in-
farcted and non-infarcted myocardium that ultimately result
in chamber dilation, hypertrophy of viable segments and
progressive myocardial dysfunction. In human patients, dila-
tive remodelling of the ventricle is associated with higher
mortality and increased incidence of ventricular arrhyth-
mias. The severity of adverse post-infarction remodelling is
dependent on the size of the infarct but is also affected by
the qualitative characteristics of cardiac repair and by the pro-
file of cellular and molecular alterations in the viable
myocardium.

Extensive experimental evidence suggests that MI is intri-
cately associated with activation of an inflammatory reaction
(Frangogiannis, 2014a). Inflammatory mediators are directly
involved in the pathogenesis of the vulnerable plaque, lead-
ing to occlusion of the coronary vessel and subsequent
necrosis of the myocardial territory served by the vessel.
Cardiomyocyte necrosis triggers both a systemic inflamma-
tory response, mobilizing bone marrow-derived immune
cells, and a local reaction, leading to recruitment of circulat-
ing inflammatory cells that serve to clear the infarct from
dead cells and matrix debris. Although leukocyte subsets play
an important role in repair of the infarcted heart, prolonged
activation of inflammatory pathways is involved in chronic
adverse remodelling of the ventricle. Despite an impressive
growth in our understanding of the role of inflammation in
the pathogenesis of coronary occlusion and in the patho-
physiology of cardiac repair remodelling and fibrosis,
development of therapeutic strategies targeting inflamma-
tory signals in patients with MI poses major challenges. This
review provides a brief overview of the role of inflammatory
cascades in injury, repair and remodelling of the infarcted
heart, describes the long history of failed attempts to
attenuate post-ischaemic dysfunction and to reduce adverse
remodelling by targeting inflammation, and discusses
promising new therapeutic approaches and the challenges
of clinical implementation.

The role of inflammation in plaque
rupture
In patients, ruptured atherosclerotic plaques are responsible
for the majority of cases of fatal MI (Davies and Thomas,
1984). Both systemic inflammation and local activation of
macrophage-driven inflammatory signalling in the micro-
environment of the plaque have been implicated in the
pathogenesis of plaque rupture (Crea and Libby, 2017).
Induction of chemokines, such as CCL2 and fractalkine/

CX3CL1, mediate recruitment of macrophages in atheroscle-
rotic plaques (Gu et al., 1998; Lesnik et al., 2003). The diverse
phenotypic profiles of macrophages critically regulate pro-
gression, evolution and even regression of the
atherosclerotic process (Mantovani et al., 2009; Rahman
et al., 2017). Angiotensin II (Schieffer et al., 2000), oxidized
LDL (Xu et al., 1999), CD40 signalling (Mach et al., 1997) and
pro-inflammatory cytokines stimulate macrophage-derived
expression of proteases (including MMPs and cathepsins),
degrading the extracellular matrix (ECM) of the fibrous cap
(Shah et al., 1995) and promoting plaque fissuring. Moreover,
local release of cholesterol crystals activates the inflam-
masome, generating active IL-1β and triggering pro-
inflammatory signalling (Freigang et al., 2011). In addition
to the direct actions of pro-inflammatory mediators on mac-
rophage phenotype, mast cell degranulation, dysregulation
of T cell subsets, B-cell-derived cytokine synthesis and
stimulation of vascular cells in the plaque environment have
also been implicated in activation of inflammatory macro-
phages in atherosclerotic plaques (Kaartinen et al., 1996;
Mazzolai et al., 2004; Tay et al., 2016; Sage and Mallat, 2017;
Tabas and Lichtman, 2017).

Activation of the post-infarction
inflammatory response
Prolonged coronary occlusion leads to death of the
cardiomyocytes in the tissues served by the vessel, triggering
activation of an intense inflammatory reaction. The post-
infarction inflammatory response can be divided in three
phases: the alarm phase characterized by release of damage-
associated molecular pattern (DAMP) proteins that stimulate
innate immune pathways; the leukocyte mobilization phase,
marked by recruitment of neutrophils, monocytes and lym-
phocytes in the infarcted area; and the resolution phase,
associated with suppression of pro-inflammatory signalling
and clearance of the leukocyte infiltrate (Figure 1).

During the alarm phase, necrotic cardiomyocytes release
danger signals (such as high mobility group box-1, heat
shock proteins, adenosine, extracellular RNA, and
IL-1α) that stimulate innate immune signalling (Andrassy
et al., 2008; Chen et al., 2014; Lugrin et al., 2015). Genera-
tion of ECM fragments also contributes to the intense
inflammatory reaction in the infarcted area (Huebener
et al., 2008). Stimulation of innate immune responses fol-
lowing infarction involves effects of alarmins on Toll-like
receptor and receptor for advanced glycation
end-products-dependent pathways in leukocytes, vascular
cells and fibroblasts triggering transcription of pro-
inflammatory cytokines and chemokines (Arslan et al.,
2011a; Zhang et al., 2015). Activation of the complement
cascade also contributes to the post-infarction inflamma-
tory response (Hill and Ward, 1971; De Hoog et al., 2014).
Post-infarction inflammation not only serves to clear dead
cells and matrix debris from the infarcted tissue but also
sets the stage for repair of the infarcted area. In addition
to activation of a local myocardial inflammatory response,
infarction also triggers systemic inflammation, stimulating
release of bone marrow-derived leukocytes. In mouse
models of MI, the spleen has also been suggested as an
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important contributor of inflammatory leukocytes (Swirski
et al., 2009). Although the relative role of the cardio-splenic
axis in human MI remains unclear, clinical investigations
have suggested that patients with acute coronary syn-
dromes (ACS) have increased splenic metabolic activity
and that activation of the spleen independently predicts
cardiovascular events (Emami et al., 2015).

The cytokines and chemokines
Induction of pro-inflammatory cytokines is a hallmark of the
post-infarction inflammatory response. Early release of
TNF-α (Frangogiannis et al., 1998) triggers a cytokine cascade
that mediates recruitment of leukocytes in the infarctedmyo-
cardium. Activation of the inflammasome platform in fibro-
blasts, cardiomyocytes and immune cells (Kawaguchi et al.,
2011; Mezzaroma et al., 2011) stimulates release of active
IL-1β, a critical mediator in regulation of cardiac inflamma-
tion and repair. IL-1 signalling stimulates chemokine synthe-
sis and promotes leukocyte infiltration in the infarcted
myocardium (Bujak et al., 2008). Cardiac fibroblasts also re-
spond to IL-1, by acquiring a pro-inflammatory and
matrix-degrading phenotype and by secreting cytokines,
chemokines and MMPs. Moreover, IL-1 delays myofibroblast
conversion, suppressing synthesis of α-smooth muscle actin
(α-SMA) (Saxena et al., 2013). The effects of IL-1 on cardiac fi-
broblasts may serve to prevent premature acquisition of a
matrix-synthetic phenotype, until the infarct is cleared of
dead cells and matrix debris.

Chemokines are also markedly up-regulated in the
infarcted heart and have been demonstrated to mediate
leukocyte recruitment. Induction of both CXC and CC
chemokines has been consistently demonstrated in experi-
mental models of MI. CXC chemokines containing the ELR
motif (Glu-Leu-Arg), such as CXCL8/IL-8, have been

implicated in neutrophil recruitment (Ivey et al., 1995). On
the other hand, members of the CC chemokine subfamily,
such as CCL2 and CCL7, mediate recruitment of pro-
inflammatory monocytes (Dewald et al., 2005; Nahrendorf
et al., 2007; Zouggari et al., 2013). Some members of the
chemokine family may have effects on non-haematopoietic
cells, such as cardiomyocytes, fibroblasts and vascular cells.
The CXC chemokine SDF-1/CXCL12may recruit progenitor
cells with angiogenic potential (Liehn et al., 2011), contribut-
ing to neovascularization of the scar, and may stimulate pro-
survival cascades in ischaemic cardiomyocytes (Aiuti et al.,
1997; Askari et al., 2003). The CXC chemokine IP-10/
CXCL10 is markedly up-regulated in experimental models
of MI and may suppress fibrosis by inhibiting growth factor-
mediated fibroblast migration (Bujak et al., 2009; Saxena
et al., 2014a).

Recruitment of leukocytes
Chemokines and cytokines play a critical role in recruit-
ment of inflammatory leukocytes in the infarcted myocar-
dium. Cytokine-mediated induction of adhesion molecules
in endothelial cells and integrin activation in leukocytes
trigger adhesive interactions, ultimately leading to neutro-
phil, monocyte and lymphocyte extravasation in the in-
farcted area (Yamazaki et al., 1993; Frangogiannis, 2014a).
Leukocyte subpopulations have been suggested to play im-
portant roles in both injurious and repair processes follow-
ing MI. Early studies suggested that infiltrating neutrophils
may extend ischaemic injury by exerting cytotoxic effects
on viable cardiomyocytes in the infarct border zone
(Entman et al., 1992). On the other hand, neutrophils
have been suggested to orchestrate repair of the infarcted
heart by modulating macrophage phenotype (Horckmans
et al., 2017).

Figure 1
The inflammatory response following MI can be divided into three phases: the alarm phase, the leukocyte mobilization phase and the resolution
phase. Necrotic cardiomyocytes (CM) release alarmins (heat shock proteins [HSP], high mobility group box 1 [HMGB1], extracellular RNA/eRNA,
IL-1α and other danger signals) that activate innate immune signalling pathways. ECM fragments also trigger inflammatory signalling. Induction
of pro-inflammatory cytokines, such as IL-1, and chemokines mediates recruitment of neutrophils (N) and pro-inflammatory monocytes (Mo)
through interactions with endothelial cells (EC) that involve selectins and integrins. Clearance of dead cells and matrix debris from the infarct
triggers transition to the resolution phase. Anti-inflammatory lymphocyte (L) and macrophage (Ma) subsets release mediators that suppress
pro-inflammatory signalling, such as IL-10, TGF-β and pro-resolving lipid mediators. Experimental studies suggest that inhibition of the comple-
ment cascade, IL-1β antagonism, CCL2 inhibition, selectin and leukocyte integrin neutralization may be promising therapeutic strategies for pa-
tients with MI. F, fibroblast.
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The macrophages
Monocytes recruited to the infarct region differentiate into
macrophages and phagocytose dead cells and matrix debris,
while secreting cytokines and growth factors that orches-
trate repair. Clearance of apoptotic cells by professional
phagocytes, a process known as efferocytosis (Wan et al.,
2013), triggers cascades that suppress inflammation and pro-
mote activation of reparative mesenchymal cells. Ingestion
of apoptotic cells is associated with release of anti-
inflammatory cytokines, such as IL-10 and TGF-β (Huynh
et al., 2002), suppressing inflammation and activating a
fibrogenic and matrix-preserving programme. Several lines
of evidence suggest crucial protective actions of macro-
phages in cardiac repair. First, macrophage depletion in-
creased adverse remodelling in infarcted mice (van
Amerongen et al., 2007). Second, in experimental models,
macrophages played a crucial role in preventing mural
thrombus formation following MI (Ben-Mordechai et al.,
2013; Frantz et al., 2013). Third, generation of alternatively
activated macrophages exhibiting an M2-like phenotype is
critical to protect the infarcted heart from cardiac rupture
(Shiraishi et al., 2016). Transition of macrophages into an
anti-inflammatory phenotype may also require activation
of intracellular inhibitory cascades that restrain the immune
response, such as expression of IL-1 receptor associated
kinase (IRAK)-M, an inhibitory member of the IRAK
family that suppresses innate immune signalling (Chen
et al., 2012). It has been suggested that therapeutic activa-
tion of the reparative properties of macrophages through
administration of IL-4 may exert protective actions in acute
MI (Shintani et al., 2017). However, such therapeutic
approaches need to be cautiously implemented, considering
the known pro-fibrotic actions of IL-4 in the remodelling
heart (Peng et al., 2015).

The lymphocytes
Early infiltration of the infarcted heart with lymphocyte
subsets has been extensively documented in experimental
models of MI (Frangogiannis et al., 2000a; Yan et al.,
2013). Moreover, clinical studies have suggested that
effector T cells may be trapped in the coronary microcircula-
tion following reperfusion of the infarcted area and may
contribute to the pathogenesis of microvascular obstruction,
extending ischaemic cardiomyocyte injury (Boag et al.,
2015). Early recruitment of lymphocyte subpopulations to
the infarcted myocardium has been suggested to stimulate
neutrophil and monocyte infiltration. B cells have been
demonstrated to promote mobilization of pro-inflammatory
monocytes, thus playing a central role in activation of the
inflammatory cascade (Zouggari et al., 2013). CD4�γδT-cells
have been implicated in neutrophil and macrophage infil-
tration and may promote adverse remodelling following
MI (Yan et al., 2012). It should be emphasized that other
lymphocyte subsets, such as regulatory T cells (Tregs),
CD4+ helper T cells and invariant natural killer T (iNKT)
cells, may have important repair functions following MI,
negatively regulating inflammation, and activating mesen-
chymal and angiogenic cell populations to limit adverse

remodelling (Dobaczewski et al., 2010; Hofmann et al.,
2012; Sobirin et al., 2012; Weirather et al., 2014; Saxena
et al., 2014b).

Negative regulation of the
post-infarction inflammatory response
Althoughmacrophages are key effector cells in suppression of
the post-infarction inflammatory response, several other cell
types may contribute to downmodulation of pro-
inflammatory signalling. Anti-inflammatory lymphocyte
subsets, such as Tregs (Dobaczewski et al., 2010; Weirather
et al., 2014; Saxena et al., 2014b), iNKT cells (Sobirin et al.,
2012) and dendritic cells (Anzai et al., 2012) have been iden-
tified as important sources of anti-inflammatory cytokines
in the healing infarct. Surviving cardiomyocytes in the in-
farct border zone may also limit and restrain inflammation
by secreting mediators that recruit and activate regulatory
and reparative macrophages (Lorchner et al., 2015). Acquisi-
tion of an anti-inflammatory phenotype by vascular cells
may also contribute to negative regulation of post-infarction
inflammation. Members of the TGF-β family may inhibit ad-
hesion molecule expression by endothelial cells and leuko-
cytes, inhibiting leukocyte-endothelial cell interactions and
preventing uncontrolled leukocyte recruitment (Kempf
et al., 2011). Recruitment of mural cells by infarct neovessels
may serve to suppress endothelial pro-inflammatory activa-
tion (Zymek et al., 2006). Thus, timely suppression and spa-
tial containment of the inflammatory response following
infarction is dependent on activation of a wide range of mo-
lecular signals with actions on several different cell types. In
animal models, defects in these regulatory mechanisms result
in unrestrained, prolonged or expanded inflammation, lead-
ing to accentuated cardiac remodelling and worse dysfunc-
tion following infarction. In patients, defective negative
regulation of the post-infarction inflammatory response
may be involved in the pathogenesis of adverse remodelling
and heart failure in patients surviving an acute MI
(Frangogiannis, 2014a).

Myofibroblast activation
Because the adult mammalian heart has negligible regenera-
tive capacity, repair of the infarcted myocardium is depen-
dent on fibroblast activation and subsequent formation of a
collagen-based scar. Perturbations in fibroblast activation
and in the profile of ECM proteins in the infarcted and re-
modelling myocardium can be associated with increased dys-
function and adverse remodelling (Frangogiannis et al., 2005;
Kong et al., 2017). During the proliferative phase of infarct
healing, the cardiac fibroblast population markedly expands
(Frangogiannis et al., 2000b). Activated myofibroblasts form
organized arrays in the infarct border zone (Blankesteijn
et al., 1997). These cells incorporate into their cytoskeleton
contractile proteins (such as α-SMA and the embryonal iso-
form of smooth muscle myosin) (Willems et al., 1994;
Frangogiannis et al., 2000b; Shinde et al., 2017) but do not ex-
press markers of mature vascular smoothmuscle cells, such as
the SM1 and SM2 isoforms of smooth muscle myosin heavy
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chain (Frangogiannis et al., 2000b). Infarct myofibroblasts are
predominantly derived from epicardium-derived fibroblast
populations (Ruiz-Villalba et al., 2015; Kanisicak et al.,
2016). During the proliferative phase of cardiac repair,
suppression of pro-inflammatory signals, activation of
TGF-β cascades and deposition of specialized matrix proteins,
such as ED-A fibronectin (Arslan et al., 2011b) and
matricellular proteins (Frangogiannis, 2017a), trigger conver-
sion of interstitial fibroblasts into myofibroblasts.

Activatedmyofibroblasts have been identified as themain
source of ECM proteins in the healing infarct (Cleutjens et al.,
1995). In addition to their matrix synthetic capacity, acti-
vated infarct fibroblasts may also contribute to phagocytosis
of dead cells (Nakaya et al., 2017) and may secrete mediators
that modulate cardiomyocyte survival (Abrial et al., 2014) or
mediate activation of immune cells (Anzai et al., 2017).
Whether distinct subpopulations are responsible for the
functional pleiotropy of infarct myofibroblasts remains
unknown. Excessive fibroblast activation may lead to expan-
sion of the fibrotic area, increasing myocardial stiffness and
promoting diastolic dysfunction. The potential involvement
of negative regulatory mechanisms that restrain fibrogenic
signals, in the prevention of uncontrolled fibrosis following
MI, has not been investigated.

Inflammation in the remodelling
myocardium
In the presence of a large infarction, massive loss of
contractile myocardium is associated with activation of an in-
flammatory response in remote remodelling myocardial
segments, accompanied by progressive interstitial fibrosis
(Sager et al., 2016b). Several mechanisms may contribute to
inflammatory activation in the remodelling myocardium.
First, volume and pressure loads, related to dilation of the
chamber following infarction and to the elevation of filling
pressures. Mechanical stress in the remodelling myocardium
may locally activate macrophages stimulating their prolifera-
tion and promoting a fibrogenic environment (Sager et al.,
2016b). Second, defective suppression or impaired spatial
containment of the inflammatory response in the infarct
border zone may lead to prolonged activation of inflamma-
tory pathways or expansion of the inflammatory infiltrate
to viable segments (Frangogiannis et al., 2005). Third, an
immune-mediated response triggered by poorly defined anti-
gens may mediate chronic inflammation in the remodelling
myocardium (Ismahil et al., 2014). In human ischaemic heart
failure, subpopulations of patients may exhibit dysregulated
inflammatory responses that may contribute to the patho-
genesis of the cardiomyopathy.

The rationale for targeting
inflammation after MI
The critical role of inflammation in all aspects of the myocar-
dial response to injury suggests that targeting inflammatory
signals may hold promise to reduce mortality and prevent
heart failure in patients surviving an acute MI. The cell bio-
logical basis supporting therapeutic interventions that

modulate the post-MI inflammatory cascademay involve sev-
eral distinct beneficial actions. First, attenuation of inflam-
mation during the early post-ischaemic inflammatory phase
may prevent leukocyte-mediated cardiomyocyte injury in
surviving cardiomyocytes of the border zone. Second, inhibi-
tion of inappropriate late activation of pro-inflammatory sig-
nalling may protect cardiomyocytes in the remodelling area
from chronic apoptosis. Third, attenuation of inflammation
may restrain protease activation, increasing the tensile
strength of the healing scar and preventing adverse remodel-
ling. Fourth, suppression of inflammation-driven fibrogenic
signalling may protect the heart from dysregulated fibrotic
remodelling. Fifth, selective activation of chemokine-
dependent recruitment of progenitor cells into the area of in-
farction may promote angiogenesis and even contribute to
the ultimate goal of myocardial regeneration. Sixth, pro-
inflammatory signalling has been linked to ventricular
arrhythmias; thus, attenuation of inflammation may have
direct anti-arrhythmic actions. Finally, anti-inflammatory ap-
proaches may prevent plaque rupture reducing the incidence
of recurrent coronary events.

It should be emphasized that some of the protective ef-
fects of certain established therapeutic approaches in patients
with MI, such as angiotensin converting enzyme inhibition
(Leuschner et al., 2010), angiotensin receptor blockade
(Kohno et al., 2008), mineralocorticoid receptor (MR) inhibi-
tion (Fraccarollo et al., 2008), β-adrenoceptor blockade
(Garcia-Prieto et al., 2017) and administration of statins
(Zhang et al., 2005), may involve direct modulation of inflam-
mation. For example, leukocyte-specific β2-adrenoceptor
signalling has been reported to mediate leukocyte recruit-
ment in the infarcted heart (Grisanti et al., 2016), and a recent
study suggested that the infarct-limiting effects of β-blockade
with metoprolol in a mouse model of MI were lost following
neutrophil depletion or through genetic knockdown of genes
associated with platelet:neutrophil interactions (Garcia-
Prieto et al., 2017). However, considering the broad effects
of neurohumoral pathways on both cardiomyocyte and
non-cardiomyocyte populations, the relative contribution
of inflammatory cell modulation remains unclear.

Early attempts to inhibit inflammation were primarily
focused on the use of broad anti-inflammatory strategies,
such as glucocorticoids. These approaches were often asso-
ciated with adverse consequences. Over the last 30 years,
progress in fundamental immunology and better under-
standing of cardiac pathophysiology led to implementation
of new therapeutic strategies targeting specific inflamma-
tory pathways. Despite the increasing sophistication of
the approaches, therapeutic implementation of inflamma-
tory targets in patients with MI remains challenging, in
part due to the remarkable pathophysiological heterogene-
ity of the human condition.

Broad anti-inflammatory interventions

Glucocorticoids
Due to the ubiquitous expression of the glucocorticoid re-
ceptor (GR) in all nucleated cells, glucocorticoids have a
wide range of effects on many different cell types and are
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potent regulators of the inflammatory response (Cain and
Cidlowski, 2017). During the alarm phase, glucocorticoids
attenuate responses to danger signals, suppressing produc-
tion of inflammatory mediators. Glucocorticoids also mark-
edly reduce leukocyte infiltration into the tissues, by
decreasing chemokine expression and by suppressing adhe-
sive interactions between leukocytes and endothelial cells.
During the resolution phase, glucocorticoids exert a wide
range of actions on both inflammatory and reparative cells.
Glucocorticoids are known to promote clearance of apoptotic
cells (Liu et al., 1999) and direct macrophages towards an
anti-inflammatory phenotype (Snyder and Unanue, 1982).
In addition to their effects on immune cells, glucocorticoids
also inhibit repair, by reducing fibroblast-derived collagen
synthesis and by inhibiting the angiogenic response. It
should be emphasized that the effects of glucocorticoids
are not limited to activation of GR signalling. Glucocorti-
coids also bind with high affinity to the MRs (Arriza
et al., 1987) and may also act by activating transcription-
independent non-classical pathways, involving cell surface
receptors (Samarasinghe et al., 2012). Stimulation of MR
signalling mediates pro-inflammatory macrophage activa-
tion in vitro and in vivo (Usher et al., 2010), whereas activa-
tion of endogenous myeloid cell-specific GR signalling has
been suggested to mediate reparative pathways (Galuppo
et al., 2017). The relative role of GR and MR activation in
the response to glucocorticoid treatment is likely to depend
on the specific agent used, the dose and on the cell biolog-
ical context.

Numerous experimental studies have examined the
effects of glucocorticoids in experimental models of MI
(Table 1). Unfortunately, most of the studies were performed
in models of non-reperfused MI, limiting the value of the
conclusions in the current era of myocardial reperfusion.
Although the effects are dependent on the agent used, the
dose and duration of treatment, several studies have
suggested that glucocorticoids may protect the infarcted
myocardium, reducing cardiomyocyte necrosis and apoptosis
(Libby et al., 1973; Xu et al., 2011). The basis for these
protective actions is unclear, especially considering the use
of permanent coronary occlusion models that would be
expected to cause death of most cardiomyocytes in the area
at risk. Other in vivo studies suggested that high-dose cortico-
steroid therapy impairs clearance of dead cells from the
infarct and may disrupt fibroblast function (Kloner et al.,
1978), leading to formation of thinner scars. These effects
would be expected to be detrimental in repair of the infarcted
heart and may precipitate adverse remodelling. Clinical
studies on the use of corticosteroids in patients with MI have
produced conflicting results (Table 2). Although some studies
reported protective effects, in other studies, significant
concerns were raised regarding the safety of the approach
(Roberts et al., 1976; Giugliano et al., 2003). Considering their
broad actions on all cell types involved in cardiac injury and
repair and their effects on several molecular cascades, gluco-
corticoids cause a wide range of adverse effects and are
unattractive therapeutic options for patients with MI.
However, understanding the cell-specific actions of GR
activation may suggest more targeted approaches with
therapeutic potential. Moreover, recent insights into the
pathways involved in tissue-specific intracellular metabolism

of glucocorticoids have suggested novel therapeutic direc-
tions (Gray et al., 2017). The enzyme 11-β hydroxysteroid
dehydrogenase (11-β-HSD) catalyses intracellular regener-
ation of glucocorticoids from inert metabolites. In a mouse
model, global deletion of 11-β-HSD1, the more widely distrib-
uted isoform of the enzyme, promoted angiogenesis and
attenuated infarct expansion following MI (White et al.,
2016), suggesting that endogenous glucocorticoid regenera-
tionmay inhibit repair and exacerbate remodelling following
MI. Thus, approaches inhibiting 11-β-HSD1 may be of
therapeutic value to prevent development of heart failure
following MI.

Nonsteroidal anti-inflammatory drugs (NSAIDs)
NSAIDs (including aspirin) have broad anti-inflammatory
actions as their effects are mediated through inhibition of
COX, the rate limiting enzyme in prostaglandin synthesis.
There are two major isoforms of COX, the constitutively
expressed COX-1 and COX-2, which is not found in normal
tissues but is induced by inflammation, ischaemia and stress.
Non-selective NSAIDs, introduced in the 1950s, inhibit both
COX isoforms. Inhibition of COX-1-induced prostaglandins
in the gastric mucosa by traditional NSAIDs is often associ-
ated with gastrointestinal toxicity, including peptic ulcer
disease. Thus, selective COX-2 inhibitors were introduced in
the late 1990s in an attempt to develop anti-inflammatory
strategies without the risk of gastrointestinal side effects
(Boulakh and Gislason, 2016).

Aspirin acts through non-competitive, irreversible
acetylation of COX. In nucleated cells, the ability of the cells
to synthesize COX-1 and COX-2 de novo allows recovery of
prostaglandin synthesis despite inhibition by aspirin. In
contrast, in platelets, thromboxane A2 production is
dependent on preformed COX-1. Thus, irreversible binding
of aspirin to platelet COX-1 results in inhibition of platelet
aggregation for the entire life of the platelet and mediates
aspirin’s potent cardioprotective actions by reducing the
incidence of new cardiovascular events (ISIS-2 Collaborative
Group, 1988). In contrast, because the NSAIDs, apart from as-
pirin, competitively and reversibly inhibit COX, they do not
cause sustained inhibition of platelet aggregation and do not
provide long-term protection from atherothrombotic cardio-
vascular events (Vonkeman and van de Laar, 2010).

Although some early studies in animal models suggested
that both non-selective non-aspirin NSAIDs and selective
COX-2 inhibitors may have protective effects following MI
(Lefer and Polansky, 1979), by attenuating adverse remodel-
ling, by reducing cardiomyocyte apoptosis and by increasing
arteriolar density (Abbate et al., 2006; Straino et al., 2007),
other experimental studies demonstrated detrimental effects
on infarct healing, resulting in scar thinning (Brown Jr et al.,
1983; Hammerman et al., 1984a; Hammerman et al., 1983b)
and accentuated systolic dysfunction (Table 3) (Timmers
et al., 2007). Moreover, genetic loss-of-function studies
demonstrated protective effects for endogenous COX-2 in
myocardial ischaemia/reperfusion models (Camitta et al.,
2001; Bolli et al., 2002).

In the clinical setting, a large body of evidence suggests
that exposure to NSAIDs increases risk of cardiovascular
events in patients with known cardiovascular disease. In
post-MI patients, administration of NSAIDs is associated with

S Huang and N G Frangogiannis

1382 British Journal of Pharmacology (2018) 175 1377–1400

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=626
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2763
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2763
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2763
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2763
http://www.guidetopharmacology.org/GRAC/DatabaseSearchForward?page=1&searchString=Nonsteroidal%20anti-inflammatory%20drugs&searchCategories=all&order=rank
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=269
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4482


Table 1
Effects of glucocorticoids in experimental models of MI

Model Animal
Agent, dose and
duration of treatment Major findings Ref.

Non-reperfused MI Cat Methylprednisolone
(MP, 30 mg·kg�1, i.v.)
30 min prior or 60 min
following occlusion

Both pretreatment and post-
occlusion administration
reduced myocardial injury,
assessed through reduction
of ST segment elevation.

(Spath Jr et al., 1974)

Non-reperfused MI Dog Group1: Hydrocortisone
(HC, 50 mg·kg�1, i.v.) 30 min
after occlusion, followed by
supplementary
dose of 25 mg·kg�1 12 h
after occlusion;
Group2: HC (50 mg·kg�1, i.v.)
6 h after occlusion, followed by
supplementary dose of 25 mg·kg�1

12 h after occlusion

HC reduced infarct size and
attenuated cardiomyocyte
necrosis, even when
administered
6 h after occlusion.

(Libby et al., 1973)

Non-reperfused MI Rat MP (50 mg·kg�1

i.v.) 5 min after
occlusion,
followed by (50 mg·kg�1 i.m.)
3, 6 and 24 h after occlusion

MP treatment was associated
with reduced collagen
deposition, delayed inflammation
and repair, and persistent
presence of ‘mummified’
cardiomyocytes (cells with
preservation of striations and
sarcolemmal membrane
that exhibited
nuclear degeneration).

(Kloner et al., 1978)

Non-reperfused MI Rat 1. HC: 50 mg·kg�1 i.v.
5 min after occlusion;
2. Single-dose
MP: 50 mg·kg�1 i.v. 5 min
after occlusion;
3. Multiple dose MP: 50 mg·kg�1

i.v. 5 min after occlusion,
followed by 50 mg·kg�1

i.m. at 3, 6 and 24 h

1. Based on histological analysis
and measurements of creatine
kinase (CK) activity, glucocorticoids
salvaged injured myocardium
(by 15% in the HC group,
21% in MP single dose group, and
21% in the MP multiple dose group.
2. Multiple dose MP caused
infarct thinning

(Maclean et al., 1978)

Non-reperfused MI Cat Dexamethasone
(Dx), 8 mg·kg�1 i.v.,
30 min prior to or 60 min
following occlusion

1. Dx pre- or post- administration
significantly attenuated the increase
in plasma CPK activity.
2. Dx had no effects
on the haemodynamic
response within the
first 5 h following MI.

(Spath and
Lefer, 1975)

Non-reperfused MI Dog Group1: high dose MP
(50 mg·kg�1 i.v). 15 min
and 3, 24 and 48 h after
occlusion;
Group2: low dose MP
(30 mg·kg�1 i.v).
15 min after occlusion

1. Low dose MP reduced
the size of the infarct.
2. The high dose MP
protocol (but not low
dose MP) caused infarct
thinning and worsened
systolic dysfunction without
affecting collagen content.

(Hammerman
et al., 1983a)

Non-reperfused MI Dog MP, 7.5 mg·kg�1, i.v.
twice daily for 7 days
after occlusion

MP reduced infarct size and
attenuated compensatory
hypertrophy without
affecting haemodynamics.

(Slutsky and
Murray, 1985)

Non-reperfused MI Rat MP (50 mg·kg�1, i.v.)
immediately after occlusion,
followed by 50 mg·kg�1,
i.p., q6 h for 3 days

MP decreased collagen
content in the infarcted heart.

(Vivaldi et al., 1987)
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a high risk of death and reinfarction and an increased risk of
hospitalization due to heart failure (Gislason et al., 2006;
Brophy et al., 2007). Several mechanisms may explain the
detrimental effects of NSAIDs in patients with MI. First,
COX-2 inhibition may promote pro-thrombotic events by
inhibiting generation of prostacyclin. Second, loss of renal
actions of COX-2 may elevate blood pressure and promote
heart failure decompensation. Third, COX-2 inhibition may
block atheroprotective actions, thus accelerating atheroscle-
rosis (Egan et al., 2004). Fourth, COX-2 targeting may inhibit
important cardioprotective actions and exert pro-arrhythmic
effects. Fifth, COX inhibition may disrupt important
reparative functions, leading to formation of a defective scar
(Hammerman et al., 1984b). Considering the abundant clini-
cal evidence suggesting detrimental effects, all non-aspirin
NSAIDs should be avoided in patients with established
cardiovascular disease (Schmidt et al., 2016).

Immunomodulatory strategies
Few studies have tested the effects of non-specific
immunomodulation and immunosuppression in MI. In
animal models, early administration of low-dose immuno-
suppressive agents has been reported to exert beneficial ac-
tions. However, clinical studies have provided disappointing
results. In a rat model of reperfusedMI, cyclophosphamide
administration attenuated leukocyte infiltration and reduced
ventricular dysfunction (Zhu et al., 2008). Methotrexate
treatment was also found to exert protective effects on the
ischaemic and reperfused myocardium in both large animal
(Asanuma et al., 2004) and rodent models (Maranhao et al.,
2017). However, in a small clinical trial, methotrexate
administration to patients with STEMI did not affect acute

infarct size and worsened systolic dysfunction 3 months after
the acute event (Moreira et al., 2017). Immune modulation
with intravenous immunoglobulin also failed to reduce in-
farct size and attenuate adverse remodelling in STEMI pa-
tients (Gullestad et al., 2013).

Cyclosporine, another potent immunosuppressive agent,
has attracted interest as a therapeutic agent for patients with
MI, because of its effects as a cyclophilin B inhibitor. It has
been proposed that cyclophilin B inhibition may inhibit
opening of the mitochondrial permeability transition pore,
thus protecting ischaemic cardiomyocytes from death. In ad-
dition to its protective actions on cardiomyocytes, cyclo-
sporine may also reduce inflammation in the infarcted
heart (Squadrito et al., 1999). Despite promising early results
in pilot studies, suggesting reduced infarct size in STEMI pa-
tients treated with cyclosporine (Piot et al., 2008), a large ran-
domized double-blind controlled trial showed no beneficial
effects of a bolus dose of cyclosporine in STEMI patients un-
dergoing percutaneous coronary intervention (PCI) (Cung
et al., 2015).

The failures of broad anti-inflammatory inhibition with
corticosteroids and NSAIDs and advances in understanding
the biology of the inflammatory response led to the develop-
ment of specific inflammatory targets following MI.

Targeted anti-inflammatory
interventions
Experimental studies have identified crucial molecular sig-
nals mediating the inflammatory response following MI.
Therapeutic interventions in animal models suggested that

Table 1
(Continued)

Model Animal
Agent, dose and
duration of treatment Major findings Ref.

Non-reperfused MI Mouse Dx (20 mg·kg�1, i.p.)
20 h prior to occlusion

Dx treatment reduced
infarct size, attenuating
cardiomyocyte apoptosis.

(Xu et al., 2011)

Non-reperfused MI Rat MP (5 mg·kg�1, i.p.)
starting 7 days
post-MI and continued
to 21 day after occlusion

MP did not affect mortality or
infarct size, but attenuated
hypertrophic remodelling and
significantly increased
capillary density.

(Van Kerckhoven
et al., 2004)

Reperfused MI Dog MP single dose
(50 mg·kg�1, i.v.)
after occlusion

MP did not affect infarct
size and haemodynamic
variables.

(Genth et al., 1982)

Reperfused MI Dog MP (30 mg·kg�1, i.v.)
after occlusion;

MP increased myocardial
blood flow during ischaemia,
but had no effect on
blood flow after reperfusion.

(da-Luz et al., 1982)

Ischaemia and
reperfusion in vivo

Rabbit low dose prednisolone
(5 mg·kg�1/24 h i.m.) or high
dose prednisolone (10 mg·kg�1

/24 h i.m.) protocols

Infarct healing was significantly
delayed in both low and high
dose groups. However, infarct
thinning was not affected.

(Shizukuda et al., 1991)
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Table 2
Effects of glucocorticoid treatment in patients with MI

Type of study
Number of
patients

Agent, dose
and duration Major findings Ref.

Double blind
clinical trial

132 oral prednisone
(starting dose:
30 mg·day�1),
for 12 days

No difference in acute mortality.
No difference in rhythm and
conduction disturbance, and
cardiac rupture.

(Sievers et al., 1964)

Prospective
cohort study

446 Hydrocortisone (HC),
500 mg i.v. for the
first 4 days

HC significantly reduced mortality.
There were no differences in
the incidence of acute
complications (acute heart failure,
shock, cardiac arrhythmia, infections).

(Barzilai et al., 1972)

Prospective
cohort study

39 Methylprednisolone
(MP): 3 g, 7–12 h
following rise
of serum CPK

MP treatment reduced
infarct size.

(Morrison et al., 1975)

Prospective
cohort study

66 MP (i.v.):
1. Single 2.0 g dose
7–25 h following initial
rise of CPK;
2. Two 2.0 g doses,
3–12 h apart

Reduction of infarct size
and mortality in both
MP treatment groups.

(Morrison et al., 1976)

Prospective
cohort study

44 1. Single dose: MP,
30 mg·kg�1, i.v., 7 h
from first CPK elevation;
2. Multiple dose: MP,
30 mg·kg�1, i.v. starting
after 7 h from first CPK
elevation, every 6 h,
for 48 h

Neither single dose nor
multiple dose affected
haemodynamics. Multiple
dose MP (but not single dose)
extended infarct size, increased
ventricular dysrhythmias,
and caused hyperglycaemia.

(Roberts et al., 1976)

Prospective
cohort study

29 MP 30 mg·kg�1, i.v.
7 h and 10 h from
onset of symptoms

High doses of MP given early
in the course of MI have neither
deleterious nor beneficial effects.

(Peters et al., 1978)

Prospective
cohort study

10 MP, 2.0 g i.v. single
dose, average of 13 h
from onset
of chest pain

MP administration had no
short-term protective effects
and worsened haemodynamics.

(Heikkila and
Nieminen, 1978)

Prospective
cohort study

45 Methylprednisolone,
single dose 25 mg·kg�1,
i.v. within 4 h after
onset of chest pain

MP delayed cardiomyocyte
injury and may stabilize
lysosomal membranes
during acute myocardial ischaemia.

(Welman et al., 1979)

Prospective
cohort study

42 MP, 30 mg·kg�1,
i.v four doses, q6 h.

Early short-term high-dose
MP had no effects on infarct
size, dysrhythmias, complications,
or left ventricular
function 2 weeks after infarction.

(Bush et al., 1980)

Prospective
cohort study

28 MP (30 mg·kg�1),
i.v. two doses,
2.5 h apart

MP administration in AMI patients
had no effect on survival, infarct
size and metabolic parameters,
but increased cardiac output
and reduced
systemic vascular resistance.

(Henning et al., 1981)

Retrospective
cohort study

1746 N/A Previous or inpatient
corticosteroid use did
not affect the incidence
of cardiac rupture, or
non-rupture related
mortality in MI patients.

(Dellborg et al., 1985)
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targeted inhibition of specific inflammatory signals may
protect the infarcted heart from acute injury and prevent ad-
verse remodelling following MI. Despite promising results in
animal models, therapeutic implementation of inflammatory
targets in patients with MI has been challenging (Table 4).

Targeting the complement cascade
Activation of the complement cascade is a critical part of the
innate immune response following MI and has been sug-
gested to extend ischaemic injury (Yasojima et al., 1998). In
experimental studies, complement inhibition strategies have
consistently reduced the size of the infarct and improved
function in both rodent and large animal models of reper-
fused MI (Vakeva et al., 1998; Pischke et al., 2017). Unfortu-
nately, clinical studies have been disappointing. Approaches
targeting the complement system, an upstream activator of
the innate immune response, were equally disappointing.
In the Assessment of Pexelizumab in AcuteMyocardial infarc-
tion clinical trial, treatment of STEMI patients with the
anti-C5 antibody pexelizumab did not affect 30 daymortality
and the composite endpoint of death, cardiogenic shock and
congestive heart failure (Armstrong et al., 2007).

Targeting C-reactive protein (CRP)
Inflammatory injury is associated with release of pentra-
xins (such as CRP), prototypical acute phase proteins
involved in host defense (Deban et al., 2011). In an
experimental model of non-reperfused infarction, CRP injec-
tion accentuated cardiomyocyte injury by activating the
complement cascade, whereas (somewhat predictably)

administration of low MW inhibitors of CRP blocked the del-
eterious effects of CRP (Pepys et al., 2006). Despite these early
promising findings, enthusiasm regarding the potential value
of CRP inhibition in patients with MI is dampened by con-
flicting findings on the effects of CRP in atherosclerosis and
thrombosis. Although, in apolipoprotein-E null mice, treat-
ment with human native CRP accelerated atherosclerotic dis-
ease (Schwedler et al., 2005), in other studies, transgenic
overexpression of human CRP had no effects on atherosclero-
sis, thrombosis and inflammation (Hirschfield et al., 2005;
Tennent et al., 2008) or even delayed plaque formation
(Kovacs et al., 2007). The conflicting in vivo effects of CRP
may be explained by the contextually regulated formation
of CRP isoforms with distinct functional properties. CRP is
known to undergo dissociation from a native pentameric
form (pCRP) to potently pro-inflammatory monomeric
subunits (mCRP) that may serve to localize the inflammatory
response (Eisenhardt et al., 2009). Inhibition of CRP dissocia-
tion has been suggested as a promising anti-inflammatory
strategy in MI.

Integrins and selectins
Selectins and leukocyte integrins are critically implicated in
leukocyte extravasation in the infarcted myocardium
(Figure 1). Numerous experimental studies demonstrated
that neutralizing antibodies targeting members of the
integrin and selectin families reduced the size of the infarct
in myocardial ischaemia/reperfusion models (Simpson et al.,
1988; Ma et al., 1991; Aversano et al., 1995; Arai et al., 1996;
Christia and Frangogiannis, 2013). More recently, a

Table 2
(Continued)

Type of study
Number of
patients

Agent, dose
and duration Major findings Ref.

Retrospective study 41 N/A This uncontrolled retrospective
study suggested that use of
anti-inflammatory agents
(glucocorticoids and NSAIDs)
before and after MI may be
associated with a high
incidence of cardiac rupture.

(Silverman
and Pfeifer, 1987)

Double blind,
randomized
trial (RCT)

1118 Group 1: early MP:
30 mg·kg�1, i.v. within
6 h of chest pain;
repeated administration
3 h later;
Group 2: late MP
(30 mg·kg�1, i.v.)
6–12 h from onset of
chest pain; repeated
administration 3 h later

Late treatment (6–12 h) with
MP reduced mortality without
affecting cardiac rupture,
early malignant ventricular
arrhythmias or other adverse
cardiac events. Late MP
treatment reduced 28 day
and 6 month mortality in
patients with inferior/posterior
infarction, but not in anterior MI.
Early treatment had no effects.

(Metz et al., 1986)
(The Solu-Medrol
Sterile Powder AMI
Study Group, 1986)

RCT 40 MP, 2.0 g, i.v.
within 6 h, repeated
same dose 3 h later

MP infusion had no effects on
mortality, death from cardiac
rupture, peak cardiac injury
enzymes, arrhythmias,
haemodynamics and 6 months
hospitalization rates.

(Madias and
Hood Jr, 1982)
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Table 3
Effects of NSAIDs in experimental models of MI

Model Species
Agents dose duration
delivery method Major findings Ref.

Reperfused MI Dog Group1: BW755C
(inhibitor of both lipoxygenase
and COX, 10 mg·kg�1,
i.v.) 30 min after reperfusion
Group2: Indomethacin
(5 mg·kg�1, i.v.) 10 min
before reperfusion

BW755C treatment reduced
infarct size and decreased the
incidence of arrhythmias,
attenuating leukocyte
infiltration. Treatment
with indomethacin did
not affect infarct size and
leukocyte migration into
the ischaemic myocardium.

(Mullane
et al., 1984)

Non reperfused MI Dog Indomethacin (10 mg·kg�1,
i.v.) at 15 min and 3 h
after occlusion

Indomethacin caused infarct
expansion and scar thinning.

(Hammerman
et al., 1984b)

Non reperfused MI Cat Ibuprofen (12.5 mg·kg�1,
i.v.) 0 and 2.5 h after
occlusion

Ibuprofen attenuated
myocardial injury without
affecting haemodynamics
during the early stage
of infarction.

(Lefer and
Polansky, 1979)

Non reperfused MI Rat Aspirin (25 mg·kg�1·day�1,
i.p.) 2 days before occlusion
until the end of the experiment

Aspirin significantly attenuated
interstitial and perivascular
fibrosis in the spared myocardium,
without affecting wound healing,
compensatory hypertrophy
and LV dysfunction.

(Kalkman
et al., 1995)

Non reperfused MI Mouse Aspirin (120 mg·kg�1·day�1,
subcutaneously)
after occlusion for 4 weeks

High dose aspirin did not
affect post-infarct cardiac
remodelling and cardiac
dysfunction, but attenuated
pro-inflammatory cytokine levels.

(Adamek
et al., 2007)

Non-reperfused MI Pig Celecoxib
(COX-2i; 400 mg p.o. bid)
after occlusion until
end of protocol

Celecoxib increased
mortality, promoted
infarct thinning, LV
dilatation, and accentuated
systolic dysfunction.

(Timmers
et al., 2007)

Non-reperfused MI Rat Parecoxib
(COX-2i, 0.75 mg·kg�1 i.p.)
24 h after occlusion,
daily for 5 days

Parecoxib ameliorated
remodelling, reducing
peri-infarct apoptosis and
preserving arteriolar density.
Parecoxib did not affect
mortality, infarct size and
plasma inflammatory cytokines.

(Straino
et al., 2007)

Non-reperfused MI Mouse Parecoxib (COX-2i,
0.75 mg·kg�1, i.p.)
24 h after surgery,
daily for 5 days

Parecoxib treatment
significantly reduced
apoptosis in the
peri-infarct region;
No difference of mortality
on day 7.

(Abbate
et al., 2006)

Reperfused and
non-reperfused MI

Mouse Parecoxib (COX2i,
0.75 mg·kg�1·
day�1, i.p.) for 7 days

Parecoxib treatment reduced
mortality and attenuated
apoptosis in non-reperfused
infarcts, but had no effects
in reperfused infarction.

(Salloum
et al., 2009)
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nanoparticle-based strategy silencing five key adhesionmole-
cules was reported to preserve function in the infarcted myo-
cardium (Sager et al., 2016a). Protection of the myocardium
was presumably due to attenuation of leukocyte-mediated
cardiomyocyte injury. Unfortunately, clinical trials did not
confirm the impressive protective effects of anti-adhesion
molecule approaches observed in experimental studies.
Anti-CD11/CD18 and anti-CD18 integrin targeting failed to
reduce infarct size in STEMI patients (Baran et al., 2001;
Rusnak et al., 2001; Faxon et al., 2002) (Table 4). On the other
hand, administration of the P-selectin inhibitor inclacumab
in patients with ACS reduced cardiomyocyte injury but did
not affect clinical outcome (Tardif et al., 2013; Seropian
et al., 2014).

Chemokines as therapeutic targets
Approaches targeting chemokines involved in recruitment
of pro-inflammatory leukocytes have shown promising
results in experimental animal models. Anti-CCL2 therapy
reduced mortality, attenuated chamber dilation and im-
proved systolic function in a model of non-reperfused in-
farction (Hayashidani et al., 2003). Inhibition of CCL5 also
exerted protective effects, improving cardiac function and
attenuating fibrotic remodelling (Montecucco et al., 2012).
Silencing the chemokine receptor CCR2, the main
receptor for CCL2, that mediates recruitment of pro-
inflammatory monocytes in sites of inflammation, was
reported to have beneficial effects not only in the infarcted
heart but also in the composition of atherosclerotic plaques
and in metabolic dysfunction (Leuschner et al., 2011). How-
ever, it should be emphasized that broad targeting of the
effects of CC chemokines may also have detrimental
actions. Chemokine-mediated signalling is important for
recruitment of leukocyte subsets with anti-inflammatory

properties and may be involved in activation of a pro-
gramme of repair. In a mouse model of reperfused MI,
genetic disruption of CCR5 was associated with accentuated
dilative remodelling, presumably due to impaired recruit-
ment of anti-inflammatory monocyte subsets and of Tregs
(Dobaczewski et al., 2010). Thus, recruitment of specific
leukocyte subsets through chemokine-chemokine receptor
interactions may be critical for repression and resolution of
post-infarction inflammation.

Administration of the chemokines that recruit reparative
cells, such as CXCL12, may also hold therapeutic promise.
Therapy with CXCL12 reduced infarct size and accentuated
angiogenesis in experimental models of MI, attenuating sys-
tolic dysfunction and improving left ventricular mechanics
(Hu et al., 2007; Saxena et al., 2008; Macarthur Jr et al.,
2014; MacArthur Jr et al., 2013). Although these experimental
findings seem promising, clinical translation is challenging.
Loss-of-function studies have suggested important pro-
inflammatory actions of CXCL12 in the infarcted heart
(Proulx et al., 2007; Jujo et al., 2010) raising concerns that
administration of this chemokine may also have injurious
effects, accentuating or prolonging inflammatory cascades.
Clinical evidence remains extremely limited, as the effects
of CXCL12 therapy in MI has not been studied. However, in
a Phase II clinical trial in patients with high-risk ischaemic
cardiomyopathy, CXCL12 gene therapy was safe but did not
meet the primary endpoint for functional improvement
(Chung et al., 2015).

Targeting the cytokines
Although a growing body of experimental evidence suggests
that pro-inflammatory cytokines may be promising thera-
peutic targets in patients with MI, their pleiotropic and
multifunctional effects, and their involvement in both

Table 3
(Continued)

Model Species
Agents dose duration
delivery method Major findings Ref.

Non-reperfused MI Rat Group 1: DFU (COX2i,
5 mg·kg�1·day�1, p.o.);
Group 2: low dose aspirin
(1 mg·kg�1·day�1, p.o.);
Group 3: high dose
aspirin (25 mg·kg�1·day�1, p.o.)
30 min prior to occlusion
for 3 months

DFU treatment significantly
reduced left ventricular
end-diastolic pressure,
reduced infarct size and
improved cardiac contractility
without affecting mortality.
Aspirin had no effects on
cardiac function.

(Saito et al., 2004)

Non-reperfused MI Mouse NS-398 (COX-2i,
3 mg·kg�1·day�1, p.o.)
48 h after occlusion
for 2 weeks;
Rofecoxib (COX2i,
15 mg·kg�1·day�1, p.o.),
48 h after occlusion
for 2 weeks

NS-398 attenuated adverse
remodelling and dysfunction
following MI without affecting
infarct size. Both COX2i
reduced cardiac hypertrophy,
collagen production, and
TGF-β expression in the
infarcted heart.

(LaPointe
et al., 2004)

Non-reperfused MI Dog Piroxicam,
(1 mg·kg�1 i.v.)
15 min, 3 h after occlusion

Piroxicam caused moderate
scar thinning without
perturbing
regional function.

(Hammerman
et al., 1984a)
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Table 4
Targeted anti-inflammatory and immunomodulatory therapies in patients with MI

Type of study
Number of
patients

Agent, dose
and duration Major findings Ref.

Anti-integrin

RCT: FESTIVAL 88 Rovelizumab
(anti-CD11/18, also
known as LeukArrest
or Hu23F2G)
Low dose: (0.3 mg·kg�1)
High dose: (1.0 mg·kg�1)
i.v. after coronary
angiography

Hu23F2G was well
tolerated, with no
increase in adverse events,
including infections.
Single-photon emission
computed tomographic
(SPECT) imaging showed no
significant effects of
anti-CD11/CD18 treatment
on myocardial infarct size
in STEMI patients.

(Rusnak et al., 2001)

RCT: HALT-MI 420 Rovelizumab (anti-CD11/18)
Low dose: (0.3 mg·kg�1)
High dose: (1.0 mg·kg�1)
i.v. before coronary angioplasty

Treatment with
anti-CD11/CD18 did
not affect infarct size in
STEMI patients who
underwent
primary angioplasty.

(Faxon et al., 2002)

RCT: LIMIT-AMI 394 Anti-CD18 (i.v. bolus of 0.5
or 2.0 mg·kg�1, before
commencing recombinant
tissue plasminogen
activator (rtPA)

No significant effects
on coronary blood flow,
infarct size, or the rate
of ECG ST-segment
elevation resolution
STEMI patients
treated with rtPA.

(Baran et al., 2001)

Anti-Selectin

RCT: SELECT-ACS 544 Inclacumab (anti-P-Selectin),
single infusion 5 or 20 mg·kg�1,
1–12 h before PCI

Inclacumab at a dose of
20 mg·kg�1 appeared
to reduce myocardial
damage after PCI in
non-STEMI patients,
without significant
difference in adverse events.

(Tardif et al., 2013)

IL-1 inhibition

Pilot Study:
VCU-ART

10 Anakinra (IL-1RN)
100 mg·day�1

subcutaneously
for 14 days

IL-1 blockade with anakinra
was safe and ameliorated
LV remodelling in
STEMI patients.

(Abbate et al., 2010)

Pilot Study:
VCU-ART2

30 Anakinra (IL-1RN)
100 mg·day�1

subcutaneously
for 14 days

Anakinra blunted the acute
inflammatory response in
STEMI patients, without
showing benefits of
LV remodelling or function.

(Abbate et al., 2013)

RCT: MRC-ILA
Heart Study

182 Anakinra (IL-1RN)
100 mg·day�1

subcutaneously
for 14 days

Following 14 day treatment
of IL-1RN, inflammatory
markers were reduced;
In patients with NSTE-ACS,
IL-1RN treatment significantly
increased major adverse
cardiac events at 1 year,
but not at day 30 or 3 months.

(Morton et al., 2015)

RCT: CANTOS 10 061 Canakinumab
(anti-IL-1β) at three
different doses:
50, 150 and 300 mg

In patients with previous MI and
an hs-CRP level ≥ 2 mg·L�1,
canakinumab (150 mg)
significantly reduced hs-CRP,

(Ridker et al., 2017)

continues
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Table 4
(Continued)

Type of study
Number of
patients

Agent, dose
and duration Major findings Ref.

subcutaneously, once
every 3 months

but increased the incidence
of fatal infection and sepsis.
The 300 mg dose had
similar effects, but
the multiple statistical
comparisons yielded
non-significant differences
in comparison to the
placebo group.
The reduced rate of
recurrent cardiovascular
events in treated patients
was independent of
lipid level lowering.

Anti-complement

Pilot study 31 Complement 1 inhibitor
(loading dose 50 or
100 U·kg�1 6 h after MI, followed by
continuous infusion
1.25 or 2 U·kg�1·h�1

for 48 h)

In MI patients who
received early thrombolytic
therapy, C1 inhibitor
treatment reduced troponin
T and creatine kinase-MB
levels, without causing
adverse effects.

(de Zwaan et al., 2002)

RCT: COMPLY 943 Pexelizumab (anti-C5)
bolus (2 mg·kg�1),
or pexelizumab bolus
(2 mg·kg�1) followed
by pexelizumab infusion
(0.05 mg·kg�1·h�1)
for 20 h

In STEMI patients receiving
fibrinolysis, adjunct treatment
with pexelizumab neither
reduced infarct size nor
improved clinical outcomes.

(Mahaffey et al., 2003)

RCT: COMMA 960 Pexelizumab bolus
(2 mg·kg�1), or pexelizumab
bolus (2 mg·kg�1) followed
by pexelizumab infusion
(0.05 mg·kg�1·h�1) for 20 h

In STEMI patients undergoing
PCI, adjunct treatment with
pexelizumab had no
measurable effect on infarct
size or on the composite of
90 day death, new or worsening
heart failure, shock and stroke.
90 day mortality was significantly
reduced in pexelizumab
bolus plus infusion.

(Granger
et al., 2003)

RCT: APEX-AMI 5745 Pexelizumab prior to
PCI, i.v. bolus 2 mg·kg�1,
followed by 0.05 mg·kg�1·h�1

infusion over the
subsequent 24 h

In patients treated with
primary PCI for STEMI,
adjunct pexelizumab treatment
showed no significant effect
on mortality or the composite
endpoint of death, cardiogenic
shock, and heart failure at
day 30 or day 90.

(Armstrong
et al., 2007)

IL-6 antagonism

RCT 117 Tocilizumab
(IL-6Ra, single dose
280 mg, i.v.) prior to
coronary angiography

Tocilizumab attenuated the
inflammatory response and
PCI-related troponin T (TnT)
release in NSTEMI patients.
Tocilizumab did not affect
coronary flow reserve during
hospitalization or after 6 months.

PMID: (Kleveland
et al., 2016)
(Holte et al., 2017)

continues
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injurious and reparative responses pose major therapeutic
challenges. Recent experimental and clinical studies have
suggested that the IL-1 system may represent a promising
therapeutic target in patients with MI (Saxena et al., 2016).
Safe and effective strategies for IL-1 inhibition are extensively
used treatment of patients with inflammatory arthritides or
auto-inflammatory syndromes. Anakinra is a non-glycos-
ylated recombinant form of IL-1 receptor antagonist that
binds to the type I IL-1 receptor but does not activate a
signalling response, thus functioning as a competitive
IL-1α/IL-1β inhibitor. On the other hand, anti-IL-1β antibod-
ies (such as canakinumab) selectively target IL-β-mediated
responses. In most experimental MI studies, inhibition of
the IL-1 systemwith anakinra or anti-IL-1β antibodies exerted
protective effects, reducing chamber dilation and improving
dysfunction (Abbate et al., 2008; Toldo et al., 2013). Early
evidence from clinical studies has also produced promising
results. Pilot studies demonstrated that anakinra can be
safely administered as a 2 week course in STEMI patients
and may attenuate adverse remodelling, while protecting
from the development of post-infarction heart failure
(Abbate et al., 2010; Abbate et al., 2013; Abbate et al.,
2015a). In the recently reported Canakinumab Antiinfla-
mmatory Thrombosis Outcome Study trial (Ridker et al.,
2017), IL-1β inhibition in high-risk patients with

atherosclerotic disease attenuated inflammation and reduced
cardiovascular events. In patients treated with 150 mg of
canakinumab, the primary endpoint (the composite of MI,
nonfatal stroke and cardiovascular death) was significantly
lower. The beneficial effects of canakinumab were modest:
to avoid one primary endpoint event, 156 patients had to
be treated for 1 year. Moreover, the canakinumab group ex-
hibited a very low, but significantly higher than placebo,
death rate due to infection. Despite these issues and the
concerns regarding the very high cost of the antibody, this
landmark clinical trial supports the case for targeted anti-
cytokine therapy in selected patients with MI. An emerging
body of evidence suggesting that IL-1-mediated inflamma-
tion accentuates adverse remodelling post-MI (Bujak et al.,
2008) and may promote arrhythmia generation (Monnerat
et al., 2016; De Jesus et al., 2017) further strengthens the ratio-
nale for targeting IL-1 in high-risk subpopulations of MI
patients, suggesting that protection may not be limited to
reduction of new atherothrombotic events.

The TGF-β system
Despite the critical involvement of TGF-β signalling in car-
diac injury and repair (Frangogiannis, 2017b), targeting
TGF-β following MI poses several major challenges. First,
TGF-βs are known to modulate phenotype and function of

Table 4
(Continued)

Type of study
Number of
patients

Agent, dose
and duration Major findings Ref.

TNF-α antagonism

RCT 26 Etanercept
(TNF-α antagonist)
at a single intravenous
dose of 10 mg

Following acute MI, etanercept
reduced systemic inflammation
but increased platelet activation
without affecting peripheral
vasomotor or fibrinolytic function.

(Padfield et al., 2013)

Proteinase inhibition

RCT: TIPTOP 429 Doxycycline (non-selective
MMP inhibitor, 100 mg p.o.)
immediately after primary
PCI and then twice
daily for 7 days

In patients with a first STEMI
and LV dysfunction treated
with primary PCI, a timely
short-term treatment with
doxycycline significantly
reduced adverse LV
remodelling and decreased
infarct size assessed
through SPECT.

(Cerisano et al., 2014)

RCT: PREMIER 253 PG-116800 (MMP inhibitor),
200 mg oral dose taken
twice daily for 90 days

MMPs inhibition with
PG-116800 after MI
failed to reduce LV
remodelling or improve
clinical outcomes in
patients with STEMI.

(Hudson et al., 2006)

Pilot clinical trial 10 Prolastin C, human
plasma-derived
alpha1 antitrypsin (AAT),
single infusion of 60 mg·kg�1,
within 12 h of revascularization

A single administration
of Prolastin C in patients
with STEMI is well
tolerated and is associated
with a blunted acute
inflammatory response.

(Abbate et al., 2015b)
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all cell types involved in cardiac injury and repair. Thus, TGF-
β inhibition would be expected to affect both injurious and
protective actions. The effects of TGF-β inhibition may be de-
pendent on the timing of the intervention. Thus, early neu-
tralization of TGF-β may block anti-inflammatory signalling
in macrophages, accentuating inflammation and increasing
the incidence of cardiac rupture, whereas late suppression
may attenuate pro-fibrotic signals, improving diastolic func-
tion (Ikeuchi et al., 2004). Second, because TGF-β is involved
in preservation of cardiac and vascular homeostasis, TGF-β in-
hibition following MI may carry significant risks, promoting
aneurysmal rupture in vulnerable patients (Engebretsen
et al., 2014; Frangogiannis, 2014b; Biernacka et al., 2015).
Third, the complex biology of TGF-β signalling further com-
plicates design of therapeutic strategies. TGF-β signals
through intracellular effectors, the Smads and through activa-
tion of non-Smad pathways (such as p38 MAPK, Erk
MAPK, and JNK). Design of effective therapeutic strategies
requires understanding of the relative role of Smad-
dependent and Smad-independent signalling in vivo (Bujak
et al., 2007; Rainer et al., 2014). In the infarcted heart,
experimental studies have suggested distinct effects of Smad-
dependent signalling in cardiomyocytes and fibroblasts
(Kong et al., 2017). Moreover, non-Smad pathways may also
contribute to activation of interstitial cells towards a
fibrogenic phenotype (Molkentin et al., 2017). Dissection
of cell-specific responses to TGF-β and understanding of
the temporal sequence of its cellular actions in the in-
farcted heart are needed to design safe and effective thera-
peutic approaches.

Targeting the MMP system
MMPs are involved in post-MI repair and remodelling, not
only by critically regulating ECM metabolism but also by
processing inflammatory mediators, such as chemokines
and cytokines (Fingleton, 2017; Frangogiannis, 2017a).
Genetic deletion of MMP2 and MMP9 has been shown to
attenuate post-MI ventricular dilation and to protect from
cardiac rupture in mouse models of non-reperfused MI
(Ducharme et al., 2000; Matsumura et al., 2005). However,
pharmacological inhibition of MMPs in animal models of
MI has produced conflicting results, depending on the
timing of the intervention, the inhibition profile of the
agent used and the experimental model. Early treatment
with doxycycline, a non-selective MMP inhibitor, attenu-
ated adverse remodelling in a rat model of non-reperfused in-
farction (Villarreal et al., 2003). In contrast, early inhibition
of MMP9 delayed resolution of inflammation and worsened
dysfunction in a mouse model of permanent coronary
occlusion (Iyer et al., 2016). In clinical studies, no consis-
tent beneficial effects of MMP inhibition have been
reported. In the TIPTOP trial, administration of doxycy-
cline (100 mg p.o. bid for 7 days) in patients with STEMI
and left ventricular dysfunction reduced the size of the
infarct and attenuated cardiac remodelling (Cerisano
et al., 2014). In contrast, in the PREMIER trial, administra-
tion of an MMP inhibitor with high affinity for MMP2,
MMP3, MMP8, MMP9, MMP13 and MMP14 did not im-
prove clinical outcomes and left ventricular remodelling
in STEMI patients (Hudson et al., 2006).

Challenges in targeting inflammation
following MI

The diverse roles of inflammatory cascades in
injury and repair
The critical involvement of inflammation in both injury and
repair of the infarcted heart complicates attempts to target in-
flammatory signals in patients with MI (Saxena et al., 2016).
Inflammatory pathways have been implicated in extending
cardiomyocyte death and in triggering matrix degradation
but also play a critical role in clearance of dead cells from
the infarct and in formation of a scar that preserves the
structural integrity of the ventricle. Moreover, inflammatory
mediators have been implicated in recruitment of progenitor
cells involved in infarct angiogenesis (Taghavi and George,
2013). Thus, inhibition of an inflammatory signal involved
in early injury may also inhibit a crucial repair response.
Design of therapeutic strategies targeting inflammation in
patients with MI needs to take into account important
temporal and spatial considerations. There is ample evidence
to suggest that prolonged or expanded pro-inflammatory
signalling may accentuate adverse remodelling by activating
proteases that degrade the cardiac ECM, by transducing pro-
apoptotic responses in cardiomyocytes and by promoting
fibrogenic signalling in the viable non-infarcted myocardium
(Chen et al., 2012; Frangogiannis et al., 2005). It is likely that
following MI, there is a therapeutic window of opportunity
for safe and effective targeting of specific inflammatory
signals. Understanding the time course of the cellular actions
of specific inflammatory signals is critical for optimal design
of therapeutic strategies.

The pathophysiological heterogeneity of human
post-infarction remodelling
The remarkable pathophysiological heterogeneity in human
patients surviving MI further complicates therapeutic imple-
mentation of promising targets. The extent of adverse post-
MI remodelling is only partly dependent on the size of the
infarct. Differences in susceptibility to adverse remodelling
between patients may be explained by age and gender,
genetic substrate, the presence or absence of concomitant
conditions, the pattern of atherosclerotic disease, administra-
tion of medications and other poorly understood factors.
Certain subpopulations of patients may have defective
mechanisms for negative regulation of inflammation, thus
exhibiting prolonged or expanded inflammatory responses.
Others may have accentuated fibrotic reactions. Pathophysi-
ological stratification of the patients on the basis of their
biochemical profile, clinical characteristics and functional re-
sponses may identify patients with overactive post-infarction
inflammatory responses that may benefit from targeted anti-
inflammatory strategies (Frangogiannis, 2014a). Clinical
and experimental studies suggest that certain patient subpop-
ulations, such as diabetics, may exhibit dysregulated inflam-
matory reactions following MI that may be responsible for
accentuated remodelling and worse dysfunction. Patients
with diabetes have a high incidence of diastolic dysfunction
following MI, despite a smaller infarct size and comparable
systolic dysfunction (Stone et al., 1989). In experimental
models, diabetes and obesity are associated with
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cardiomyocyte hypertrophy and interstitial fibrosis. These
changes may reflect exaggerated angiotensin-mediated re-
sponses and increased TGF-β/Smad signalling (Biernacka
et al., 2015). Targeting fibrogenic mediators may be a promis-
ing therapeutic strategy in these patients. On the other hand,
other patients may exhibit prolonged activation of pro-
inflammatory signals. These patients may benefit from strate-
gies targeting critical inflammatory cascades, such as IL-1.
Biomarkers (Seropian et al., 2016) and imaging approaches
(Wollenweber et al., 2014; Nahrendorf et al., 2015) may be
used to assess inflammatory activation in these patients, in
order to design personalized therapeutic approaches.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked
to corresponding entries in http://www.guidetopharma-
cology.org, the common portal for data from the IUPHAR/
BPS Guide to PHARMACOLOGY (Harding et al., 2018), and
are permanently archived in the Concise Guide to PHARMA-
COLOGY 2017/18 (Alexander et al., 2017a,b,c,d,e).
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